Hello,
I want to ask you about your plans to optimize the Table.annotate() function.
The problem I ran into was running:
xmap_anno = xmap_anno.annotate(src_type = tissue_gene_anno[xmap_anno.src].gene_type, src_chr = tissue_gene_anno[xmap_anno.src].chr)
where xmap_anno has about 10M rows and tissue_gene_anno has about 17K rows.
Running this, the job hangs for hours and then fails, giving the following error:
Java stack trace:
org.apache.spark.SparkException: Job aborted due to stage failure: Task 1 in stage 9.0 failed 20 times, most recent failure: Lost task 1.25 in stage 9.0 (TID 137, hail-w-1.c.gtex-v8.internal, executor 24): ExecutorLostFailure (executor 24 exited caused by one of the running tasks) Reason: Executor heartbeat timed out after 138440 ms
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1517)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1505)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1504)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1504)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:814)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:814)
at scala.Option.foreach(Option.scala:257)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:814)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1732)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1687)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1676)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:630)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2029)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2050)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2069)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2094)
at org.apache.spark.rdd.RDD$$anonfun$collect$1.apply(RDD.scala:936)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:362)
at org.apache.spark.rdd.RDD.collect(RDD.scala:935)
at is.hail.sparkextras.ContextRDD.collect(ContextRDD.scala:132)
at is.hail.rvd.OrderedRVD$.getPartitionKeyInfo(OrderedRVD.scala:478)
at is.hail.rvd.OrderedRVD$.getPartitionKeyInfo(OrderedRVD.scala:488)
at is.hail.rvd.OrderedRVD$.coerce(OrderedRVD.scala:556)
at is.hail.rvd.OrderedRVD$.coerce(OrderedRVD.scala:514)
at is.hail.rvd.OrderedRVD$.coerce(OrderedRVD.scala:495)
at is.hail.expr.TableJoin.execute(Relational.scala:1342)
at is.hail.table.Table.value$lzycompute(Table.scala:221)
at is.hail.table.Table.value(Table.scala:216)
at is.hail.table.Table.x$3$lzycompute(Table.scala:237)
at is.hail.table.Table.x$3(Table.scala:237)
at is.hail.table.Table.rvd$lzycompute(Table.scala:237)
at is.hail.table.Table.rvd(Table.scala:237)
at is.hail.table.Table.copy2$default$1(Table.scala:1162)
at is.hail.table.Table.keyBy(Table.scala:500)
at is.hail.table.Table.keyBy(Table.scala:489)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:280)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:214)
at java.lang.Thread.run(Thread.java:748)
Hail version: devel-63d60cc
Error summary: SparkException: Job aborted due to stage failure: Task 1 in stage 9.0 failed 20 times, most recent failure: Lost task 1.25 in stage 9.0 (TID 137, hail-w-1.c.gtex-v8.internal, executor 24): ExecutorLostFailure (executor 24 exited caused by one of the running tasks) Reason: Executor heartbeat timed out after 138440 ms
Driver stacktrace:
Of course, it is possible that this error stems from the fact that I’m doing a lookup from another table. What is your current estimate for an annotation/filtering step for a table with the number of rows on the order of 10M? And do you have any plans to optimize this anytime in the near future?
Brian