I am using the command below to write the results on a file name that I previously generated, however I have set overwrite parameter to True as command below still I am getting error in below.
Any help to resolve is highly appreciated.
Command:
mt_vep.write(output="dnax://" + dbid_out + "/" + filepre + ".mt", overwrite=True)
Error:
FatalError Traceback (most recent call last)
Cell In[10], line 16
13 # VEP annotation
14 mt_vep = hl.methods.vep(mt2, config="file:///mnt/project/Work/vep.json")
---> 16 mt_vep.write("dnax://" + dbid_out + "/" + filepre + ".mt", overwrite=True)
17 print("end Time =", datetime.now())
18 continue
File <decorator-gen-1266>:2, in write(self, output, overwrite, stage_locally, _codec_spec, _partitions)
File /opt/conda/lib/python3.9/site-packages/hail/typecheck/check.py:584, in _make_dec.<locals>.wrapper(__original_func, *args, **kwargs)
581 @decorator
582 def wrapper(__original_func, *args, **kwargs):
583 args_, kwargs_ = check_all(__original_func, args, kwargs, checkers, is_method=is_method)
--> 584 return __original_func(*args_, **kwargs_)
File /opt/conda/lib/python3.9/site-packages/hail/matrixtable.py:2739, in MatrixTable.write(self, output, overwrite, stage_locally, _codec_spec, _partitions)
2736 _partitions_type = None
2738 writer = ir.MatrixNativeWriter(output, overwrite, stage_locally, _codec_spec, _partitions, _partitions_type)
-> 2739 Env.backend().execute(ir.MatrixWrite(self._mir, writer))
File /opt/conda/lib/python3.9/site-packages/hail/backend/py4j_backend.py:82, in Py4JBackend.execute(self, ir, timed)
80 return (value, timings) if timed else value
81 except FatalError as e:
---> 82 raise e.maybe_user_error(ir) from None
File /opt/conda/lib/python3.9/site-packages/hail/backend/py4j_backend.py:76, in Py4JBackend.execute(self, ir, timed)
74 # print(self._hail_package.expr.ir.Pretty.apply(jir, True, -1))
75 try:
---> 76 result_tuple = self._jbackend.executeEncode(jir, stream_codec, timed)
77 (result, timings) = (result_tuple._1(), result_tuple._2())
78 value = ir.typ._from_encoding(result)
File /cluster/spark/python/lib/py4j-0.10.9.5-src.zip/py4j/java_gateway.py:1321, in JavaMember.__call__(self, *args)
1315 command = proto.CALL_COMMAND_NAME +\
1316 self.command_header +\
1317 args_command +\
1318 proto.END_COMMAND_PART
1320 answer = self.gateway_client.send_command(command)
-> 1321 return_value = get_return_value(
1322 answer, self.gateway_client, self.target_id, self.name)
1324 for temp_arg in temp_args:
1325 temp_arg._detach()
File /opt/conda/lib/python3.9/site-packages/hail/backend/py4j_backend.py:35, in handle_java_exception.<locals>.deco(*args, **kwargs)
33 tpl = Env.jutils().handleForPython(e.java_exception)
34 deepest, full, error_id = tpl._1(), tpl._2(), tpl._3()
---> 35 raise fatal_error_from_java_error_triplet(deepest, full, error_id) from None
36 except pyspark.sql.utils.CapturedException as e:
37 raise FatalError('%s\n\nJava stack trace:\n%s\n'
38 'Hail version: %s\n'
39 'Error summary: %s' % (e.desc, e.stackTrace, hail.__version__, e.desc)) from None
FatalError: HailException: file already exists: dnax://database-GXKvB5QJK2zZ4Jq80gggX48v/ukb23157_c10_b0_v1.mt/rows
Java stack trace:
is.hail.utils.HailException: file already exists: dnax://database-GXKvB5QJK2zZ4Jq80gggX48v/ukb23157_c10_b0_v1.mt/rows
at __C2328Compiled.__m2332split_WriteMetadata(Emit.scala)
at __C2328Compiled.apply(Emit.scala)
at is.hail.expr.ir.CompileAndEvaluate$.$anonfun$_apply$4(CompileAndEvaluate.scala:61)
at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23)
at is.hail.utils.ExecutionTimer.time(ExecutionTimer.scala:81)
at is.hail.expr.ir.CompileAndEvaluate$.$anonfun$_apply$2(CompileAndEvaluate.scala:61)
at is.hail.expr.ir.CompileAndEvaluate$.$anonfun$_apply$2$adapted(CompileAndEvaluate.scala:59)
at is.hail.backend.ExecuteContext.$anonfun$scopedExecution$1(ExecuteContext.scala:140)
at is.hail.utils.package$.using(package.scala:635)
at is.hail.backend.ExecuteContext.scopedExecution(ExecuteContext.scala:140)
at is.hail.expr.ir.CompileAndEvaluate$._apply(CompileAndEvaluate.scala:59)
at is.hail.expr.ir.CompileAndEvaluate$.evalToIR(CompileAndEvaluate.scala:33)
at is.hail.expr.ir.LowerOrInterpretNonCompilable$.evaluate$1(LowerOrInterpretNonCompilable.scala:30)
at is.hail.expr.ir.LowerOrInterpretNonCompilable$.rewrite$1(LowerOrInterpretNonCompilable.scala:67)
at is.hail.expr.ir.LowerOrInterpretNonCompilable$.apply(LowerOrInterpretNonCompilable.scala:72)
at is.hail.expr.ir.lowering.LowerOrInterpretNonCompilablePass$.transform(LoweringPass.scala:67)
at is.hail.expr.ir.lowering.LoweringPass.$anonfun$apply$3(LoweringPass.scala:16)
at is.hail.utils.ExecutionTimer.time(ExecutionTimer.scala:81)
at is.hail.expr.ir.lowering.LoweringPass.$anonfun$apply$1(LoweringPass.scala:16)
at is.hail.utils.ExecutionTimer.time(ExecutionTimer.scala:81)
at is.hail.expr.ir.lowering.LoweringPass.apply(LoweringPass.scala:14)
at is.hail.expr.ir.lowering.LoweringPass.apply$(LoweringPass.scala:13)
at is.hail.expr.ir.lowering.LowerOrInterpretNonCompilablePass$.apply(LoweringPass.scala:62)
at is.hail.expr.ir.lowering.LoweringPipeline.$anonfun$apply$1(LoweringPipeline.scala:22)
at is.hail.expr.ir.lowering.LoweringPipeline.$anonfun$apply$1$adapted(LoweringPipeline.scala:20)
at scala.collection.mutable.ResizableArray.foreach(ResizableArray.scala:62)
at scala.collection.mutable.ResizableArray.foreach$(ResizableArray.scala:55)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:49)
at is.hail.expr.ir.lowering.LoweringPipeline.apply(LoweringPipeline.scala:20)
at is.hail.expr.ir.CompileAndEvaluate$._apply(CompileAndEvaluate.scala:50)
at is.hail.backend.spark.SparkBackend._execute(SparkBackend.scala:463)
at is.hail.backend.spark.SparkBackend.$anonfun$executeEncode$2(SparkBackend.scala:499)
at is.hail.backend.ExecuteContext$.$anonfun$scoped$3(ExecuteContext.scala:75)
at is.hail.utils.package$.using(package.scala:635)
at is.hail.backend.ExecuteContext$.$anonfun$scoped$2(ExecuteContext.scala:75)
at is.hail.utils.package$.using(package.scala:635)
at is.hail.annotations.RegionPool$.scoped(RegionPool.scala:17)
at is.hail.backend.ExecuteContext$.scoped(ExecuteContext.scala:63)
at is.hail.backend.spark.SparkBackend.withExecuteContext(SparkBackend.scala:351)
at is.hail.backend.spark.SparkBackend.$anonfun$executeEncode$1(SparkBackend.scala:496)
at is.hail.utils.ExecutionTimer$.time(ExecutionTimer.scala:52)
at is.hail.backend.spark.SparkBackend.executeEncode(SparkBackend.scala:495)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.ClientServerConnection.waitForCommands(ClientServerConnection.java:182)
at py4j.ClientServerConnection.run(ClientServerConnection.java:106)
at java.lang.Thread.run(Thread.java:750)
Hail version: 0.2.116-cd64e0876c94
Error summary: HailException: file already exists: dnax://database-GXKvB5QJK2zZ4Jq80gggX48v/ukb23157_c10_b0_v1.mt/rows