Error in Terra When Initializing HAIL

I was unable to implement the 01-genome-wide-association-study.ipynb notebook on Hail-Notebook-Tutorials. I received the following warning after the hl.init() command:

/opt/conda/lib/python3.10/site-packages/hailtop/aiocloud/aiogoogle/ UserWarning: Reading spark-defaults.conf to determine GCS requester pays configuration. This is deprecated. Please use `hailctl config set gcs_requester_pays/project` and `hailctl config set gcs_requester_pays/buckets`.
SLF4J: No SLF4J providers were found.
SLF4J: Defaulting to no-operation (NOP) logger implementation
SLF4J: See for further details.
SLF4J: Class path contains SLF4J bindings targeting slf4j-api versions 1.7.x or earlier.
SLF4J: Ignoring binding found at [jar:file:/usr/lib/spark/jars/log4j-slf4j-impl-2.18.0.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See for an explanation.
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
Running on Apache Spark version 3.3.0
SparkUI available at http://saturn-26616ce0-7b3e-4578-bb69-4567cf490d15-m.c.terra-67a6826d.internal:37893

Then I got the following error when attempting to download the file:

2023-10-03 21:56:25.636 Hail: INFO: downloading 1KG VCF ...
2023-10-03 21:56:28.692 Hail: INFO: importing VCF and writing to matrix table...
Py4JNetworkError                          Traceback (most recent call last)
File /opt/conda/lib/python3.10/site-packages/py4j/, in ClientServerConnection.send_command(self, command)
    515 if answer.strip() == "":
--> 516     raise Py4JNetworkError("Answer from Java side is empty")
    517 if answer.startswith(proto.RETURN_MESSAGE):

Py4JNetworkError: Answer from Java side is empty

During handling of the above exception, another exception occurred:

Py4JNetworkError                          Traceback (most recent call last)
File /opt/conda/lib/python3.10/site-packages/py4j/, in GatewayClient.send_command(self, command, retry, binary)
   1037 try:
-> 1038     response = connection.send_command(command)
   1039     if binary:

File /opt/conda/lib/python3.10/site-packages/py4j/, in ClientServerConnection.send_command(self, command)
    538"Error while receiving.", exc_info=True)
--> 539 raise Py4JNetworkError(
    540     "Error while sending or receiving", e, proto.ERROR_ON_RECEIVE)

Py4JNetworkError: Error while sending or receiving

During handling of the above exception, another exception occurred:

TypeError                                 Traceback (most recent call last)
Cell In[3], line 1
----> 1 hl.utils.get_1kg('data/')

File /opt/conda/lib/python3.10/site-packages/hail/utils/, in get_1kg(output_dir, overwrite)
     84 cluster_readable_vcf = _copy_to_tmp(fs, local_path_uri(tmp_vcf), extension='vcf.bgz')
     85 info('importing VCF and writing to matrix table...')
---> 86 hl.import_vcf(cluster_readable_vcf, min_partitions=16).write(matrix_table_path, overwrite=True)
     88 tmp_sample_annot = os.path.join(tmp_dir, '1kg_annotations.txt')
     89 source = resources['1kg_annotations']

File <decorator-gen-1484>:2, in import_vcf(path, force, force_bgz, header_file, min_partitions, drop_samples, call_fields, reference_genome, contig_recoding, array_elements_required, skip_invalid_loci, entry_float_type, filter, find_replace, n_partitions, block_size, _create_row_uids, _create_col_uids)

File /opt/conda/lib/python3.10/site-packages/hail/typecheck/, in _make_dec.<locals>.wrapper(__original_func, *args, **kwargs)
    581 @decorator
    582 def wrapper(__original_func, *args, **kwargs):
    583     args_, kwargs_ = check_all(__original_func, args, kwargs, checkers, is_method=is_method)
--> 584     return __original_func(*args_, **kwargs_)

File /opt/conda/lib/python3.10/site-packages/hail/methods/, in import_vcf(path, force, force_bgz, header_file, min_partitions, drop_samples, call_fields, reference_genome, contig_recoding, array_elements_required, skip_invalid_loci, entry_float_type, filter, find_replace, n_partitions, block_size, _create_row_uids, _create_col_uids)
   2812     hl.utils.warning(
   2813         f'You are trying to read {path} with *ONE* core of parallelism. This '
   2814         'will be very slow. If this file is block-gzipped (bgzip-ed), use '
   2815         'force_bgz=True instead.'
   2816     )
   2818 reader = ir.MatrixVCFReader(path, call_fields, entry_float_type, header_file,
   2819                             n_partitions, block_size, min_partitions,
   2820                             reference_genome, contig_recoding, array_elements_required,
   2821                             skip_invalid_loci, force_bgz, force, filter, find_replace)
-> 2822 return MatrixTable(ir.MatrixRead(reader, drop_cols=drop_samples, drop_row_uids=not _create_row_uids, drop_col_uids=not _create_col_uids))

File /opt/conda/lib/python3.10/site-packages/hail/, in MatrixTable.__init__(self, mir)
    706 self._col_indices = Indices(self, {self._col_axis})
    707 self._entry_indices = Indices(self, {self._row_axis, self._col_axis})
--> 709 self._type = self._mir.typ
    711 self._global_type = self._type.global_type
    712 self._col_type = self._type.col_type

File /opt/conda/lib/python3.10/site-packages/hail/ir/, in MatrixIR.typ(self)
    491 @property
    492 def typ(self):
    493     if self._type is None:
--> 494         self.compute_type(deep_typecheck=False)
    495     return self._type

File /opt/conda/lib/python3.10/site-packages/hail/ir/, in MatrixIR.compute_type(self, deep_typecheck)
    483 def compute_type(self, deep_typecheck):
    484     if deep_typecheck or self._type is None:
--> 485         computed = self._compute_type(deep_typecheck)
    486         if self._type is not None:
    487             assert self._type == computed

File /opt/conda/lib/python3.10/site-packages/hail/ir/, in MatrixRead._compute_type(self, deep_typecheck)
    183 def _compute_type(self, deep_typecheck):
    184     if self._type is None:
--> 185         return Env.backend().matrix_type(self)
    186     else:
    187         return self._type

File /opt/conda/lib/python3.10/site-packages/hail/backend/, in Py4JBackend.matrix_type(self, mir)
    183 def matrix_type(self, mir):
--> 184     jir = self._to_java_matrix_ir(mir)
    185     return tmatrix._from_java(jir.typ())

File /opt/conda/lib/python3.10/site-packages/hail/backend/, in Py4JBackend._to_java_matrix_ir(self, ir)
    169 def _to_java_matrix_ir(self, ir):
--> 170     return self._to_java_ir(ir, self._parse_matrix_ir)

File /opt/conda/lib/python3.10/site-packages/hail/backend/, in Py4JBackend._to_java_ir(self, ir, parse)
    143     r = CSERenderer(stop_at_jir=True)
    144     # FIXME parse should be static
--> 145     ir._jir = parse(r(finalize_randomness(ir)), ir_map=r.jirs)
    146 return ir._jir

File /opt/conda/lib/python3.10/site-packages/hail/backend/, in Py4JBackend._parse_matrix_ir(self, code, ir_map)
    157 def _parse_matrix_ir(self, code, ir_map={}):
--> 158     return self._jbackend.parse_matrix_ir(code, ir_map)

File /opt/conda/lib/python3.10/site-packages/py4j/, in JavaMember.__call__(self, *args)
   1314 args_command, temp_args = self._build_args(*args)
   1316 command = proto.CALL_COMMAND_NAME +\
   1317     self.command_header +\
   1318     args_command +\
   1319     proto.END_COMMAND_PART
-> 1321 answer = self.gateway_client.send_command(command)
   1322 return_value = get_return_value(
   1323     answer, self.gateway_client, self.target_id,
   1325 for temp_arg in temp_args:

File /opt/conda/lib/python3.10/site-packages/py4j/, in GatewayClient.send_command(self, command, retry, binary)
   1053         response = self.send_command(command, binary=binary)
   1054     else:
-> 1055         logging.exception(
   1056             "Exception while sending command.")
   1057         response = proto.ERROR
   1058 except KeyboardInterrupt:
   1059     # For KeyboardInterrupt triggered from Python shell, it should
   1060     # clean up the connection so the connection is
   1064     # See also for
   1065     # more details.

File /opt/conda/lib/python3.10/logging/, in exception(msg, exc_info, *args, **kwargs)
   2107 def exception(msg, *args, exc_info=True, **kwargs):
   2108     """
   2109     Log a message with severity 'ERROR' on the root logger, with exception
   2110     information. If the logger has no handlers, basicConfig() is called to add
   2111     a console handler with a pre-defined format.
   2112     """
-> 2113     error(msg, *args, exc_info=exc_info, **kwargs)

File /opt/conda/lib/python3.10/logging/, in error(msg, *args, **kwargs)
   2103 if len(root.handlers) == 0:
   2104     basicConfig()
-> 2105 root.error(msg, *args, **kwargs)

File /opt/conda/lib/python3.10/logging/, in Logger.error(self, msg, *args, **kwargs)
   1497 """
   1498 Log 'msg % args' with severity 'ERROR'.
   1503 logger.error("Houston, we have a %s", "major problem", exc_info=1)
   1504 """
   1505 if self.isEnabledFor(ERROR):
-> 1506     self._log(ERROR, msg, args, **kwargs)

TypeError: Log._log() got an unexpected keyword argument 'exc_info'

Hi @beneopp !

This looks like a broken Hail installation. Can you describe how you started your Hail cluster and how you installed Hail?

I launched the Jupyter Cloud Environment on Terra. I used the standard Hail application configuration and reduced the number of CPU’s to 2. Attached is a screenshot of the configurations I used.

@beneopp hmm. Most folks use clusters, not “Spark single node”, so it’s possible that path is less well tested in Terra.

Can you trigger the error again and send us the Hail .log file? The easiest way to get that is to SSH to the master node of the cluster (always named CLUSTER_NAME-m). If you don’t have the ability to SSH, you’ll have to use the notebook to gsutil cp ...log gs://your-bucket/logfile then download it on your laptop.

Hail is definitely failing to start properly and the reason why should be in that log file.

Thank you for your prompt reply.

I tried the environment with a “spark single node” and 4 CPU’s, and the starting step worked fine. I think the error might be caused by the machine used. Attached is the log file from when 2CPUs are used and the error occurs.

In general, I am wondering what makes the “Spark single node” parameter important. I am new to using this tool and don’t know anything about Spark. If it is important, I think it would be helpful to explain this in the Hail-Notebook-Tutorials workspace.


hail-20231004-1700-0.2.120-f00f916faf78.log (21.6 KB)

@beneopp , which workspace are you referring to? The Hail team doesn’t own any workspaces, those are produced by Terra. I can ask them to update the workspaces though if there is specific feedback.

We have some general advice on using the cloud in the Hail docs. In general, people use “Spark clusters”. Google has a “Dataproc” product which allows you to start and stop clusters. We provide a tool that helps you do that called hailctl dataproc.

In Terra, you have to use their UI instead. For most analyses, you don’t want to use “Spark single node” because that means you’re using one “node” (aka “VM” aka “computer”) rather than a cluster of nodes. That means you’re limited to the number of cores on that one computer. Most sequencing datasets are too large to wait for a single computer to read all the data.

Hmm, this log indicates that you have two SparkContexts and that one of them is stopped and the other is active. This shouldn’t normally happen. If you start a new notebook from scratch and run

import hail as hl
hl.balding_nichols_model(1, 10, 10).show(10, 10)

Do you see a matrix of genotypes? If not, can you copy all the output you see here? We need to sort out why your notebook somehow has two SparkContext s